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Strings at superplanckian energies: in search of the string symmetry

By D. J. Gross
Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544, U.S.A.

The characteristic energy scale of superstring theory, which attempts to unify all the
interactions of matter with gravity, is the Planck energy of 10 eV. Although this
energy is 16 orders of magnitude higher than currently accessible energies, it is
important to consider the nature of string physics in this region since it could shed
light on the non-perturbative physics at the Planck scale, which determines the
structure of the vacuum. :

In this paper I review some recent attempts to explore this domain. In particular,
I discuss string scattering at very high energies, the indications of the existence of a
large symmetry that is restored at short distances and the possible breakdown of our
concepts of space-time at these energies.

1. INTRODUCTION

We have heard much in this meeting about the technology of two-dimensional conformal field
theory, which is useful for the construction of classical vacua for string theory. However, the
real problem in string theory is not to find more and more classical solutions, but to find the
dynamics that picks the unique vacuum, and thereby to make contact with the real world.

It is not unusual to have more than one classical vacuum in a quantum mechanical system,
especially in supersymmetric theories where there are often many ‘flat directions’ in which one
can vary the expectation value of some field without changing the energy of the vacuum. In
such a situation one can develop a perturbation theory about each vacuum separately.
However, unless perturbative instabilities arise, the correct vacuum involves non-perturbative
physics, e.g. tunnelling. The trouble is that in string theory we have a similar situation, but we
do not know the lagrangian, we do not even know what the coordinates are. All we have are
the classical solutions and perturbation theory about them. All of our understanding of string
theory is based on the following two ingredients: a rule for finding the classical vacua
(equivalent to classical solutions) of some theory whose lagrangian we do not know, and rules
for calculating S-matrix elements in perturbation theory. ,

This is not good enough. One of the reasons it is not good enough is that perturbation theory
diverges very badly. This is a recent result of Gross & Periwal (1988) (our proof is for the
bosonic string theory, mainly for technical reasons, but I believe it is true for all string theories).
That is, if you construct string scattering amplitudes perturbatively in powers of the coupling
(which in principle is determined by the dynamics but in practice, namely in perturbation
theory, is a free parameter), then you discover that this perturbation expansion has zero radius
of convergence. The coefficients grow faster than z!, so not only is it divergent it is also not Borel
summable. This is bad for perturbation theory but very good for physics. Ifit were not the case
that perturbation theory diverged then you could sum it, ending up with billions and billions
of classical vacua, and the full quantum mechanical perturbations about them. Because these
are all consistent theories, order by order in the coupling, you would end up with billions of
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402 D.J. GROSS

consistent theories. All of them would contradict observation as all of them have unbroken
supersymmetry and all of them have a massless dilaton. So it is good that we are not allowed
to sum the series.

The meaning of a perturbation theory that diverges in this way is that the vacuum is
unstable. One indication of this is that if you try to sum such a pertubative expansion (say by
the Borel technique), you would find that the vacuum has complex energy, which indicates
vacuum instability. Such series occur often in quantum mechanics, for example in the case of
the double well potential. They also occur in totally consistent physical field theories, such as
quantum chromodynamics (Qcp). In both of these cases the non-Borel summable divergences
are related to the existence of instantons, which are signals of quantum tunnelling that mixes
different vacua. Tunnelling effects behave as exp [—1/g*], which cannot be reproduced by a
perturbative expansion. We regard this divergence as an indication that all of the string
solutions that people have found are unstable at the quantum level as a result of non-
perturbative effects. We must develop a formalism that allows us to go beyond perturbation
theory, find the non-perturbative effects that will pick out a unique vacuum, break
supersymmetry, generate a mass for the dilaton and all other good things.

The main trouble in going beyond perturbation theory is that we do not have the analogue
of the lagrangian, or a second-quantized hamiltonian. We do not even know what the natural
variables of string theory are, nor what the natural description of configuration space is. All we
have are these rules for constructing S-matrix amplitudes in perturbation theory. There have
been many attempts to go beyond perturbation theory to find the correct basic formulation of
the theory. I think it honest to say that none of these suggestions has got very far. A sign of how
bad things are is the difficulty in finding non-stationary classical solutions of string theory. An
appropriate euclidean solution of this variety could be used to explore non-perturbative
phenomena semi-classically. Although we have developed much understanding of stationary
classical solutions, which are given by conformal field theories, not one non-stationary solution
has been constructed !

I think it is very important to keep an open mind about these issues. The most obvious
approach such as the construction of string field theory might not be correct. It is very instructive
to recall the other instance in which strings appear in physics, namely as a description of the
large-scale behaviour of Qcp, where they describe the approximate structure of hadronic
electric flux tubes. The large-distance behaviour of SU, gauge theory, in the limit of large N,
might very well be described by an effective string theory. To leading order in 1/ N we would
have a non-interacting system of strings, whose spectrum would consist of stable hadrons. The
coupling of the hadrons would be proportional to 1/4/ N, and one could develop a perturbative
expansion of hadronic scattering amplitudes, much as one does in string theory.

If one had such a formulation of Qcp it would be very difficult to extend it to a non-
perturbative framework. Much of the underlying simplicity, especially the conceptual
simplicity, of the theory would not be evident. An analogue of the problems we now face would
be the attempt to discover quarks, gluons and non-abelian gauge theory starting from an
effective string theory of Qcp. The reason is that the formulation of the theory appropriate for
large-scale physics does not reveal the essence of Qcp. In Qcp, as in most theories, the ultimate
simplicity lies at short distances. In this régime the variables in terms of which one describes
the system are fewer and simpler and the symmetries of the theory are manifest and evident.
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STRINGS AT SUPER-PLANCKIAN ENERGIES 403

If this is true for strings as well, then to make progress we must try to understand the high-
energy behaviour, or the high-energy phase, of string theory. We must also be ready for the
possibility that a totally different kind of structure will be appropriate for the description of this
domain; but we may hope that it will prove to be conceptually simpler and more elegant.
Thus we must explore the physics of strings at energies above their characteristic energy
scale. In the case of superstring theory, which attempts to unify all the interactions of matter
with gravity, this is the Planck energy of 10% eV. Although this energy is 16 orders of
magnitude higher than currently accessible energies, it is important to study this domain. The
idea is to do what an experimental high-energy physicist would if she had unlimited funds
available, namely build an accelerator with the highest possible energy and scatter protons (or
gravitons) and look at what comes out. We don’t have unlimited funds but we have a theory,
or at least a small handle on the theory. So we can do thought (gedanken) experiments,
pushing the theory to its limits where it might reveal new structures, or at least new problems.
In particular, if the theory possesses a much larger symmetry than the symmetry that is evident
in low-energy scattering amplitudes (i.e. supergauge + general coordinate invariance) than it
might become evident in the structure of high-energy scattering amplitudes. In this paper I
review some recent attempts to explore this domain. In particular I discuss string scattering at
very high energies, the indications of the existence of a large symmetry that is restored at short
distances and the possible breakdown of our concepts of space-time at these energies.

2. THE HIGH-ENERGY BEHAVIOUR OF STRING SCATTERING AMPLITUDES

I shall describe, briefly, the study that I carried out, with Paul Mende (Gross & Mende
1987, 1988) of the high-energy behaviour of string scattering. From these calculations a few
very interesting features emerge. First, the limit of very high energies or, because the only mass
scale in the theory is the Planck mass, the zero Planck mass limit, is the semi-classical limit of first-
quantized string theory. Namely, order by order in the perturbative expansion of string
scattering amplitudes, the functional integrals over the space-time surfaces mapped out by the
propagating strings are dominated by a saddle point, which corresponds to a classical solution
of the string equations of motion on a particular Riemann surface.

The fact that the zero Planck mass limit is a semi-classical limit has interesting implications
that I shall discuss. One of them is that it is easy to calculate the high-energy behaviour order
by order in perturbation theory. Also, the result has a large amount of universality and is very
stringy and unusual. Finally, there appears in the structure of the scattering amplitudes hints
of a large and totally mysterious symmetry of string theory that is restored as we take the Planck
mass to zero (Gross 1988).

Let us first examine the behaviour of string scattering at large energy in the Born
approximation. This is straightforward because the amplitude is given as a ratio of gamma
functions and the limit is easily deduced with the aid of Stirling’s formula. Consider the elastic
scattering of four tachyons, the ground state of the bosonic string. (For simplicity I shall discuss
mostly the bosonic string, although most of my remarks hold for the super and heterotic strings
as well.) The Virasoro—Shapiro amplitude is given by

oL (—1—35) [(—1—3) I'(—1—3u)

Atree =& 1‘(2.{_.;_5) 1"(2+-§-l) I"(2+§u) 7

(2.1)

[ 8 ] 28-2
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where s, ¢, u are the Mandelstam variables s = — (p, +p,)%, t = — (py+p3)% u=—(p,+5,)*;
2 =8 and s+¢+u = —32. For large energy, s— o0, and fixed s-channel scattering angle ¢,

sin?lp = —t/(s+32) &~ —1t/s, cos’3p = —u/(s+32) & —u/s, we have,
Ao = 8ig2e 8(stu) P exp [—3(sIns+¢Int+ulnu)]

= ig?2% 1(sin ¢) ~® exp {(s + 32) [sin® 3 In sin® 3¢ + cos® 3¢ In cos® 361} (2.2)

tree

This exponential fall-off is quite different from that of the power behaviour characteristic of
field theory. It is clearly an essential feature of string theory, surely related to the finiteness of
this theory, yet its deeper meaning is still unclear. It contradicts the rigorous lower bound
of quantum field theory, which states that |A(s,cos@)| > exp [—+/sInsf(@)].

The proof of this bound uses unitarity, the existence of a finite mass gap and, most
importantly, the assumption of polynomial boundedness in the energy, for fixed ¢, of the
scattering amplitudes. Of course, perturbative string theory amplitudes violate all of these
assumptions so there is no contradiction. In quantum field theory polynomial boundedness is
a consequence of locality, and the power fall-off at high energies is a consequence of power
singularities in the operator product of local fields at light-like separations. In the days of
axiomatic field theory people asked themselves what is the worst kind of singularity that one
could tolerate in the product of field operators, ¢(x) ¢(y), and still have a local theory. For
example, if you have any finite sum of delta functions, (07 8(x—y)), than you get a local
distribution, which vanishes when x # y. But you can even have an infinite sum as long as the
coefficients do not grow too rapidly. When you work out what that means in momentum space
it means that you can’t have more raid fall-off than exp (—+/s). If you violate the lower bound
you violate locality.

In string theory we find this crazy exponential behaviour, crazy from the point of view of
field theory, and therefore we should be interested because it is a sign that something new is
happening at short distances in string theory. There certainly is no way that one could
represent this physics by an effective field theory that is truly local. This is one of the most
interesting lessons that we learn from the calculation of high-energy string scattering.

Let us now consider the general G-loop amplitude, 4;(F), given by the path integral

4,8 = (L2 ax ep{~ L [eeveero. v, x v, (2.3)
h|

where the string tension o’ is proportional to Mp5,, i, V; is the vertex operator for the emission

of the ith particle and the integral is over all compact surfaces of genus G. In this formula it

looks like o plays the role of Planck’s constant and &’ — 0 is the classical limit. However, we

must remember that to discuss the classical limit of a theory one must specify the observables.

In our case the observables are the vertex operators of physical states, all of which depend on

the external momenta as

V() = j A, v/ g FEEY (B, X(E),

where ¥ (P, X(£,)) depends on the quantum numbers of the particle. In the limit of high
energy, or a’—> 00, or My, —0, it is then clear that X* ~ a’(1/8%) P*. In other words X*
should be scaled by a’, in which case the exponent appears with a’ upstairs. Thus &’ 00, or
Moy anex =0, is the semi-classical limit and in this limit the integral will be dominated by a

[ 86 ]
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particular two-dimensional surface, X* and €.~ In the critical dimension the integral is
invariant under the group of diffeomorphisms and Weyl rescalings of the metric, which is why
we have divided by A7, the volume of this group. It can then be reduced to an integral over
a slice of the finite-dimensional moduli space . of Riemann surface of genus G (D’Hoker
& Phong 1989). Consider, for simplicity, external tachyons whose vertex operators are
¥ (P) = 1. The X* integral is easily done yielding

g =g . [dm] EI d*, v g(£) Q(m, ) exp (-1 DR EG,(£, &)1, (2.4)

where m are a set of coordinates for moduli space, 2(r, 5,) is the measure on the moduli space
and G,(£;,§;) is the scalar Green function, 4,G,,(£,£;) = —2ré® (£,,£,), on the surface.

The only place that the momenta enter into this expression is in the exponential. Therefore,
in the limit that all F, F; become large, we can perform the integral by saddle-point techniques.

Th t,
€ exponen E(P,E,m) = lizjm;cm(g,, £), (2.5)
<

can be regarded as the electrostatic energy of two-dimensional Minkowski charges B, placed
at positions £ on a Riemann surface of genus G with moduli m. Thus to determine the
amplitude, we must find the values of §, and m for which the action & (F, §;, m) is extremal. This
is equivalent to the problem of finding the points of electrostatic equilibrium (in general
unstable) on an arbitrary two-dimensional surface which is allowed to change its shape at no
energy cost! This is a beautiful variational problem. It does not appear to have been
investigated, perhaps because it is only for Minkowski charges (where we can set Pf ~ 0
compared to F, F}) that the problem is strictly conformally invariant.

Because this exponential term is common to all string theories, as well as to amplitudes
involving other external states, the dominant large-energy behaviour of string amplitudes will be
independent both of the theory and the particular quantum numbers of the scattered particles. It will also be
independent of the nature of the compactification of some of the spatial dimensions, as long as
we consider scattering particles that are not wrapped many times around some internal
dimension or whose internal momenta are not large. Of course the prefactor will depend to
some degree on the theory and on the external particles. This is an important result. It is an
indication of the universality of high-energy behaviour, analogous to the universality of the
singularities of the operator product expansion in field theory. It opens the way for the
systematic study of the high-energy behaviour of amplitudes with any number of external
particles of any type. Such an investigation could throw light on what replaces the operator
product expansion in string theory.

This behaviour also means that the determination of the asymptotic behaviour of fixed
angle, high-energy scattering in string theory is a much simpler problem than in field theory.
If we were to try to evaluate the behaviour of field theoretic amplitudes by similar methods
(i.e. introduce Schwinger or Feynman parameters, perform the integrals over the momenta
and search for a saddle point in the remaining integrals), we would fail. The integrals over the
Feynman or Schwinger parameters, the analogue of the moduli for field theory, are dominated
by end-point contributions. One can use power counting to estimate the fall-off of field theory
graphs in perturbation theory, but the precise coefficients are not easily obtained. In string
theory it turns out, as we shall see below, that the saddle points lie in the middle of moduli
space, far from the boundaries. For this reason we can ignore the infrared divergences of the

[ 87 ]
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bosonic string. They arise from points on the boundary of moduli space which do not dominate
the high-energy behaviour. In other words, if we were to cut off the infrared instabilities of the
bosonic theory by means of a cut-off, the high-energy behaviour would be independent of the
cut-off.

In string theory, we will be able to derive a precise form for the asymptotic behaviour of the
G-loop amplitude. Not only can we easily find the dominant saddle point, (r, g}), but we will
be able to calculate the measure on moduli space at these points, 2(r, éf), as well as calculate
the gaussian fluctuations about the saddle!

Let us redo the tree approximation by considering electrostatics on a sphere. Take a
sphere, put four Minkowski charges (whose sum is zero) on the sphere and find the positions
of equilibrium. The sphere is conformally the same as the complex plane (including the point
at infinity), as can be seen by a stereographic projection that is a conformal transformation.
The Green’s function on the plane is simply G(z,z’) = In|z—2Z’|. So the electrostatic energy is
very simple. It is just

& = s[In|z; — z)| +In|z;—z,|] + ¢[In |z, — 25| +In |z, — z,|]] + u[In |z, — z,| + In |z, — z,]].

Because all spheres are equivalent to the complex plane there are no moduli. So the only thing
we have to vary are the positions of the charges. Because of the conformal invariance this
problem has an SL(2,C) (Moibus) invariance. The action will be invariant under a
transformation z— (az+54)/(cz+d), that takes the plane into the plane. The only SL(2,C)
invariant combination of four zs is their cross ratio,

A= (2,—25) (2,—24) /(21— 24) (25— 25)-
By using momentum conservation it is trivial to see that, because s+¢+u =0,
& =tlnjA|+uln|1—A|,

which is easy to extremize. Differentiating with respect to A we find ¢/A = u/(1—A). Thus

= —t/s = sin*}@. Plugging this back into the action we find that the minimal action is just
the expression we derived before by using Stirling’s formula. So we reproduce the result for
the sphere and we have understood that this expression comes from a saddle point. Similar
methods can then be used to discuss an arbitrary Riemann surface with any number of handles.

It turns out that to study the problem of a Riemann surface of large genus it is useful to think
of a Riemann surface as a branched cover of the complex plane, or as an algebraic curve, y =
fl(z), where y and z are complex variables. This describes a curve in CP?, or equivalently y is
a meromorphic function of z and describes a branched cover of the complex plane, a Riemann
surface.

For example the torus is a two-sheeted cover of CP!, the complex plane including the point
at infinity, branched over four points; i.e. the algebraic curve

¥y = (z2—a) (2= ap)/(2—;) (2—ay). (2.6)

To construct the torus in this'way, take two copies of the complex plane, one over the other.
Next, make square root branch cuts on each sheet between 4, and a;, and between g, and a,.
Then construct ‘crossed bridges’, identifying the left edge of a cut on one sheet with the right
edge of the corresponding cut on the other, and vice versa. The surface is clearly closed and
connected, and a simple triangulation shows it has genus 1. What we have done is connect two
spheres by bridges to obtain a torus.

[ 88]
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We are interested in an algebraic curve of the same type, an N sheeted cover of the Riemann
surface. This is a curve with branch points at a,, each one of which has N sheets, so that
when you go around each of these branch points N times you come back to the original sheet.

The most general curve of this form is

L
g =T (z=a)™ (2.7)
-1

As long as the L;s are relatively prime to N then each branch point g, is of order N—1 and is
a point common to all N sheets. k(Note that a square root branch point is of order one!) The
number of branch points is precisely L if we impose that 3L, = 0 (mod N), so that the point
at infinity is regular. The curve has a Z, automorphism, the largest generic automorphism of
a Riemann surface. It is not difficult to show that the genus of such a curve is given by

G=LN—-1)(L-2). . (28)

I believe that the dominant saddle points, the elastic scattering at high energy, are just such
Z,, curves, with four branch points at which we put the four external charges (momenta). A
remarkable feature of these curves is that we can easily do electrostatics on them. On a general
Riemann surface electrostatics, i.e. calculating the inverse of the laplacian, is a very
complicated business. But electrostatics is trivial on a branched cover of the sphere if the charges are all
placed at the branch points! This is because each sheet is simply a copy of the complex plane, and
each sheet sees the same sources because the points where the charges are located are common
to all of the sheets. It is easy to see that in this circumstance the electrostatic field will be
proportional to the electrostatic field of the four charges on the complex plane and can
immediately be written down, no matter how many sheets we have. Let us consider the most
general situation of an N-sheeted Riemann surface, where we place charges F, at the branch
points a,. (There may be more than four branch points and some of the F, might vanish. We
suppress the Minkowski indices.) We claim that the electric field produced by these charges,
E(z) = E,(z) +iE,(z), take the same value on all N sheets, and is given by

1

_1g R
XfEl(z) - N;z—a,’

Ey(2) = (2.9)

where E,(z) is the electric field of the trivial genus O case, the sphere.

In a similar fashion we can construct the saddle-point expression for the space-time
coordinate X*, which is equal in our analogue electrostatic problem to the electrostatic
potential. It is therefore given by

4 :
Xi(2) =~ 3 Piln|z—a,. (2.10)
N3

It is now trivial to calculate the action for the N-sheeted curve considered above. Because

2
ﬁmJIEN|2=N %,El s
sphere
it follows that p
6y =8&6/N=—5% 2 PFInla,—aj (2.11)
2N‘<j

In the case of four branch points, and four charges located at these branch points, &y is
[ 89 7
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proportional to the energy for the sphere. Extremizing with respect to the modulus A =
(a,—ay) (ay—ay)/(a,—a,) (a;—a,), we find the same result as before, A = —¢/s, so

6y = (1/4N) (slns+tInt+ulny). (2.12)

One problem that remains open is the extension of these results to the many-particle case.
I do not even know how to solve the problem of multiparticle high-energy scattering in the
Born approximation. The corresponding electrostatic problem is to find the equilibrium positions
of M Minkowski null charges, B, which sit on the sphere. This problem is very straightforward
to formulate, is a very pretty problem, but the general solution is unknown. I present it here
as a challenge.

The equations one must solve are the following:

ZE’—=O, i=1,...,. M, (2.13)
121272 '
which express the vanishing of the force on the ith particle, located at z,. This equation can be
written in many different ways. For example an-equivalent condition is that the electric field
B'(z) = X, P/ (2—2,) satisfy
E'E, = 0. (2.14)

This expresses the fact that the induced metric on the string world-sheet is conformal
£.=0,X,0,X=0, g,=0,X,0,X=0. (2.15)

I know of one solution to the multicharge problem, which exists whenever all M momenta
lie within a four-dimensional subspace. In this case the position of the ith charge is independent
of the value of all the other charges and is given by

, _PiHiP_ PP
¢ PM+P? T PI—iPY

(2.16)

This solution has a very nice geometric interpretation, which I will discuss elsewhere (Gross
1989)t. The action for this solution is proportional to 2, ., F, FIn (P, F). The general solution

for M particles, for M > 5 when generically the particles lie outside of four dimensions, is
unknown.

Calculating the classical action is only the beginning of a semi-classical calculation. One
must also calculate the measure on moduli space at these points, (s, g:), as well as calculate
the gaussian fluctuations about the saddle. Remarkably, using many techniques of conformal
field theory, it turns out to be possible to explicitly do these calculations (Gross & Mende
1987). The result is

AG’ —_ iG223G’+8n9G+3 (G + 1 ) 8G+3 X g2G+2 e—(s Ins+tint+u lfl u)/4(G+1)

X ( stu)—aa"+4a+9/ac+a| /\(1 _ /\) |-sc."+14/3c+3

11 () aa=nH (s R B Bu-2)] " (2.17)

t I have been informed by David Fairlie that this solution was known to him since 1972.

[ 90 ]
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Here, G= N—1, A =—s/t, F(A) = F(k/N,1—k/N;1;A),
Je(A) = C[(Ce—2A) (Ce—3(1—A) — (3—k/N)*A(1=A)], and C, = A(1—2) (d/dA) E,(2).

Note that this series is very divergent. This makes it unreasonable to try to sum it. Instead we
should try, as I shall below, to deduce properties of the series that are true to all orders.

3. HIGH-ENERGY SYMMETRIES

It is often the case that spontaneously broken symmetries of a physical theory are hard to
recognize at low energy, but become evident in the high-energy behaviour of the theory. Thus
the broken SU, x U, symmetry of the electroweak interactions can be seen by examining weak
scattering amplitudes at energies high enough that the W and Z, masses can be neglected.
String theory surely possesses a very rich symmetry, as suggested by its incredible degree of
uniqueness ; however, this symmetry is little understood. Presumably this is because most of the
string symmetry is spontaneously broken in the known ground states, leaving only the familiar
gauge symmetries unbroken and manifest. Perhaps all the string states are gauge particles, but
most are massive because of spontaneous symmetry breaking. Perhaps at very high energies,
so high that the Planck mass (which in string theory is proportional to the string tension 7" =
1/ma’) can be neglected, the full symmetry of string theory is restored. Perhaps we can discover
this symmetry (if it exists) by studying string theory in the high energy (or &’ - 00) limit. In
particular, if at high energies a larger symmetry is restored there should then exist linear
relations between the scattering amplitudes that should be valid order by order in perturbation
theory. If so these might be discoverable by analysing the high-energy behaviour of the theory
perturbatively.

We can use the results described above to search, and to find, such relations. We are now
interested in the dependence of the high-energy scattering amplitudes on the quantum
numbers of the external particles. Recall the expression, (2.3), for the amplitude where the only

Jactor that depends on the nature of the particles being scattered is [1,¥",! Therefore, if we can determine

the saddle-point surface, in other words the r,, £, and X%, which only depend on the number
of particles participating in the scattering but not on their quantum numbers, then we can
immediately deduce a linear relation between any two scattering amplitudes involving the
same number of particles with the same momenta. For example, in the case of the scattering
of particles g, and particles b,

Ag(B) = l'I“// o )/H"V (X%, ) 44(F) (1+0(a")). (3.1)

This is an amusing relation, but one of little use by itself as it only relates amplitudes at a
given order of perturbation theory. Fortunately, for the dominant saddle points discussed
above the dependence of X% on the order of perturbation theory, G, is trivial. All of these
surfaces (including those with different L,) give rise to the same exponential factor in (2.3), all
of them have the same Green’s function and for all of them X* is given by (2.10).

It is a remarkable fact that the saddle-point surfaces are all identical, except for the scale
(which goes as 1/N), for all the saddle points in each order of perturbation theory.
Consequently, the only genus dependence present in equation (3.1) comes from the (1/N)s in

the X%s present in the ¥}s, namely ¥ (X4¥,P) =¥ (X! /N,P). If all the VoS were
[91]
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410 D. J. GROSS

homogeneous functions of the X*s of the same degree, then (3.1) would be independent of G.
Unfortunately, this is not the case, except for the vertex operators of the simplest string states.
However, the factors of 1/ N can be replaced by derivatives with respect to the momenta. This
is because the operator 2 = 2/a’S Y, P, 3/0P, brings down a factor of N, when acting on e+S,
where § = slns+¢In¢+ulnu. When acting on the other polynomial terms in the momenta @
is of order 1/a’. Therefore we can replace the 1/N by 2. Thus ¥ (X4, P) = ¥ (X4} 9, P),
when acting on 4,_,(F,), to leading order in 1/a’.

Using this trick we can write down linear relations between any two four-particle scattering

amplitudess - (X2 9, ) A(B) = [17,(X5, 2, B) 44(P) (1+0(«)), (3.2)

which are independent of G! We can now argue that this relation should hold for the complete
amplitude, in the a’— 00 limit, because it holds order by order in perturbation theory. This is
a traditional method of proving properties of quantum field theory (such as the operator
product expansion, symmetries, the renormalization group, etc.) by establishing their validity
order by order in perturbation theory. It is not, however, without dangers, especially in
proving asymptotic theorems. None the less we shall make this assumption. Then, because as
o’ - oo all the particles become massless, we can relate the scattering amplitudes for any set of
particles. Indeed all the four-particle scattering amplitudes can be expressed in terms of| say,
the four-tachyon amplitude A, 0n(F):

4,(F) H"V (Xa D, B) Aenyon (F) (1+0(2)). (3.3)

This is a remarkable result, which hints at a very large and unusual symmetry of string
theory that might be restored at high energies. Similar relations could surely be derived for the
superstring and could also be extended to multiparticle amplitudes as most of the above story
goes through for these. If this is the case then the full S-matrix of the &’ —~ 0o limit of string
theory (say for the heterotic string) could be expressed in terms of the dilaton S-matrix. One
could even contemplate constructing explicitly the &’ - oo limit of the theory by plugging these
relations into the unitarity equations (which according to the arguments of Gross & Mende
(1988) might be valid for the a’— 00 limit because the high-energy behaviour is dominated by
amplitudes in which all internal momentum transfers and energies are large), and using these
to solve for the dilaton amplitudes and thereby the full &’ = oo theory. This approach is
made quite complicated by the accumulation of an infinite number of particles at zero mass
as o’ - 0.

The above relations connect amplitudes involving particles of different and arbitrarily high
spin. If they are generated by a symmetry transformation of the &’ — 00 theory it must be one
whose conserved charges have arbitrarily high spins. This would contradict the Coleman-—
Mandula theorem (Coleman & Mandula 1967), which limits the maximal spin of a
conserved charge to be one. Perhaps the Coleman—-Mandula theorem is invalid for the &’ — o0
limit of string theory. One of the assumptions of the theorem is the particle-finiteness assumption
(Coleman & Mandula 1967), which states that for any finite M there are only a finite number
of particles with mass less than M. For &’ = oo there are an infinite number of massless
particles, in which case the theorem need not apply.

It might also be the case that the Coleman—-Mandula theorem is valid. The theorem states
that if there exist higher spin conserved charges than the S-matrix equals the identity and the
theory is trivial. This is because a higher spin conserved charge, @ , would take values

[92]
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equal to 35, P, P, P, ...on asymptotic states of spinless particles of momenta P*, P?, P°® .... The
only way this can be conserved is if all the individual momenta are conserved, i.e. only forward
and backward scattering is allowed. Then, if one accepts the usual analyticity of scattering
amplitudes, no scattering at all is allowed (in more than two space-time dimensions). Perhaps
this theorem is valid, the higher spin symmetries do exist and consequently the scattering
amplitudes do all vanish as &’ - 0o. This is certainly suggested by the exponential fall-off of the
scattering amplitudes, order by order in perturbation theory, as in (2.3), as a’ - 0.

What does it mean to say that the high-energy phase of the theory has vanishing S-matrix?
It clearly implies the existence of an enormous symmetry of the theory, since the individual
momenta of each string mode are separately conserved. From this point of view the maximal
symmetry of the theory is so powerful as to render the theory trivial. The non-trivial dynamics of
the string is then a consequence of symmetry breaking.

This idea bears some resemblance to Witten’s ideas concerning the high-energy phase of
gravity, wherein the metric vanishes, physics becomes ultralocal and only topological
observables are measurable.

In this case the relations (3.2), although of the form 0/0, would still have much content.
They might be expressions of the remaining symmetry in the presence of a non-vanishing
Mpigner Or they might be consequences of the simple nature of the symmetry breaking
interactions.

In any case these relations hint at a very unfamiliar and new kind of symmetry which, to
date, we do not understand. This is perhaps not too surprising as it is very likely that the high-
energy phase of string theory is a very unfamiliar phase. Indeed I shall argue that at high
energies our standard picture of space and time must break down.

4. CONSTRUCTING A STRING MICROSCOPE

The traditional method of exploring short distances is to scatter particles at ever increasing
energies. Our most energetic accelerators function as our most sensitive microscopes. This is
because the obstacle to perfect spatial resolution is quantum mechanical fuzziness, as expressed
by the Heisenberg uncertainty principle; AX x #/P. As the momentum of our beams increases
we can resolve shorter and shorter distances and probe the very concept of the space-time
continuum. With the aid of existing high-energy accelerators we have explored distances down
to 107 cm with no sign of any breakdown in our concepts of space and time. If we were to
probe down to distances of order the Planck length, however, it is very likely that some
modification of current concepts will be necessary. Many people, in considering the notion of
the space-time continuum in the context of quantum gravity where the metric itself fluctuates,
have speculated about notions of ‘space-time foam’, which might alter the character of
space-time at the Planck length, or advanced the idea that there is a cut-off (such as a lattice
cut-off) below which the continuum loses its meaning.

We now possess a consistent theory of quantum gravity, string theory, in which this question
can be addressed in a quantitative fashion. With the aid of the semi-classical methods
developed here I shall attempt to explore this issue, to construct a string microscope and
explore whether space and time, as defined by operational stringy methods, remains a valid
concept to arbitrarily ‘short distances’. String theory possesses no cut-off at short distances,
Poincaré invariance does not break down and we therefore may contemplate experiments at
arbitrarily high energies. None the less, I shall argue that, because of the non-local nature of
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stringy probes, there is a minimal distance, of order the Planck length, below which we cannot
actually resolve distances.

In scattering experiments we do not measure distances directly. We measure only momenta
from which we indirectly infer the spatial structure of the scattering event. Thus, tests of the
nature of space-time inevitably involve much theoretical analysis. The claim that we have
tested the point-like nature of quarks and leptons to distances of order { &~ 107'® cm is based on
arguments that if the theory is modified at momenta of order 4 then experiment requires that
A be greater than #/l. I do not know of a direct way to tell whether string theory will truly
require a modification of the notions of space and time at short distances.

Let us use the semi-classical description of string scattering at high energies to examine
whether strings can be used to construct a microscope that would allow us to probe arbitrarily
short distances. This is straightforward because we have seen that the scattering in this limit
is dominated by a classical trajectory, so we can imagine translating our analysis directly into
a space-time picture. Of course the analysis that I reviewed was based on perturbation theory.
We therefore must pretend that this perturbation theory is a good approximation. This is tricky
because I argued above that the expansion is always divergent. Nevertheless, for the
perturbative vacua about which we are expanding, the coupling, g, which is proportional to
the gauge or gravitational coupling, is a free parameter. In reality it is given by the expectation
value of a dynamical field (the dilaton), but this is not fixed in perturbation theory. Therefore
let us take it to be very, very small so that we can trust perturbation theory, at least in the sense
of an asymptotic expansion.

The high-energy scattering of the strings was described by a specific surface given by
equation (2.10), where z runs over the Z, surface described previously. It is not too difficult
to picture the scattering event described by this formula. For this purpose it is useful to choose
a gauge where X°(a,7) = 7 and to describe the trajectories X*(c) as a function of the time 7. For
present purposes it is enough to note that the size of the strings at the time of collision, which
defines the size of the interaction region or the size of the distances that we can explore using
these probes, grows with increasing energy as

Xeon ® &’E/ N, (4.1)

where E is a characteristic energy of the scattering. This is unfortunate, given that we are trying
to use strings as local probes, because we find that as we increase the energy to probe shorter
distances, the effective size of the strings increases.

There is one problem with this conclusion, namely the saddlepoint trajectory is imaginary
(i.e. note the i in (2.10)). What does this mean? What it appears to mean is that in the high-
energy limit of the first-quantized theory the scattering is an exponentially suppressed process
that can only be calculated by analytically continuing to imaginary time. This is not a
tunnelling process, after all the scattering is certainly allowed as a real process. (For example
the velocity flow dX’(o,7)/dX°(0,7) is real and physical.) It is analogous to a particle that
backscatters, with an exponentially small amplitude, at energies way above a potential barrier.

This remark might be related to our previous conjecture that the symmetry revealed at high
energies is the maximal symmetry of no interaction. Indeed, the only way the strings scatter
is by a classically unallowed process that we obtain by analytical continuation to imaginary X*!

None the less, even if the trajectory described above is not the real Minkowski trajectory, it
should describe averages of the real trajectories and thus the average size of the interaction
region. At low energies (compared with the Planck mass) we gain in spatial resolution as we

[ 94 ]


http://rsta.royalsocietypublishing.org/

Y 4

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y o

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

STRINGS AT SUPERPLANCKIAN ENERGIES 413

increase the energy of our microscope. However, it appears that when we get to the Planck
length things change. The fact that our probes themselves are non-local strings becomes
relevant. In fact the strings themselves expand with increasing energy. This contributes to the
fuzziness with which we can resolve distances, so that the total fuzziness is

AX = fic/ E+ Gy E/g*". (4.2)
Here we have used the fact that (in the heterotic string theory) the string scale (set by &’) and
the Planck scale are related by g% (We can think of g* as the fine structure constant and Gy
is Newton’s constant of gravity.) This is fortunate, as it means that with our assumption of small
g, the strings never get within their Schwarzchild radius. Thus we do not have to come to grips
with strong gravitational effects. The above smearing is not caused by strong gravity, rather
it results from the non-local nature of string probes. It implies that the minimal length that can
be probed with strings is of order 1/ My, ..! If this argument is valid then space-time could
have no physical meaning below the Planck length.

I expect that in the final formulation of string theory that space and time will emerge only
as an-approximate concept, valid or useful for certain approximations to the theory. Thus, for
example, many people believe that the proper description of the configuration space of string
theory is something-like the space of all (cut-off) two-dimensional field theories. Conformal
field theories are just the classical solutions of the theory. For these we have a space-time
interpretation of ‘the perturbative expansion of string scattering amplitudes about these
classical vacua. However, for a general two-dimensional field theory there is no such
interpretation. (If this is the case then euclidean gravity is probably on shakier grounds than
one might otherwise suspect, because it does not make much sense to analytically continue an
approximation.) In such a formalism the space-time manifold is not a primary concept, rather
it is a useful description of string physics at low energies and weak couplmg (where,
presumably, perturbation theory is justified). :

Further elaboration of these ideas, along with the practical applications of shvmg theory,
awaits the development of a non-perturbative formulation of the theory.
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Discussion

J- R. Eruis, F.R.S. (Theory Division, CERN, Geneva, Switzerland). The contributions to fixed-
angle scattering that Professor Gross discussed fall off more slowly with higher energy when one
goes to higher genus. Does this mean that the true behaviour of the theory in this limit is
controlled by some ‘infinite-genus’ configurations that we do not understand?

D. J. Gross. Perhaps; it is very difficult to make sense out of a sum of terms that behaves as
g"n!e /™ in nth order. Were it not for the n! the sum could converge (if g is small enough), but
the ubiquitous n! renders the sum divergent. For this reason I have tried to extract from the
study of the high-energy behaviour consequences that can be derived order by order, and do
not require summing all orders of perturbation theory. '
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